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Approaches for Improving Field Soil Identification

Soil & Water Management & Conservation

Use of soil survey information by non-soil-scientists is often limited by their 
inability to select the correct soil map unit component (COMP). Here, we 
developed two approaches that can be deployed to smartphones for non-soil-
scientists to identify COMP from the location alone or location together with 
easily observed field data (i.e., slope, depth to the restrictive layer, and soil 
texture by depth). In addition, we also compared the two newly developed 
approaches with a traditional approach identifying COMP based on the domi-
nant COMP (DC-based approach). All three approaches were tested with the 
Rapid Assessment of US Soil Carbon database and the combined USDA- NRCS 
Soil Survey Geographic database and the USDA-NRCS State Soil Geographic 
Database. The results indicated that the observation-based approach per-
formed significantly better than the other two approaches, suggesting that 
a small set of easy-to-measure site-specific observations could significantly 
improve COMP identification. The location- and DC-based approaches had 
similar low performance overall. However, the location-based approach slight-
ly improved identifications over the DC-based approach for cases where (i) 
there were multiple possible components within the soil map unit and (ii) the 
components were located in close proximity to a boundary of a different soil 
map unit polygon. The benefit of using the location-based approach may be 
greater in specific soil survey areas where topography was the major factor 
leading to the creation of the map unit legend.

Abbreviations: COMP, soil map unit component; CoSSGO, Combined SSURGO and 
STATSGO2 Geographic Database; DC, dominant component (approach); NSE, Nash–
Sutcliffe efficiency; RaCA, Rapid Assessment of US Soil Carbon database; SMU, soil 
map unit; SMUP, soil map unit polygon; SSURGO, soil survey geographic database; 
STATSGO2, state soil geographic database.

Soil surveys can provide access to a virtual treasure trove of knowledge and 
information (Adhikari and Hartemink, 2016; Hudson, 1992; Sanchez et 
al., 2009). Mobile apps such as SoilWeb (O’Geen et al., 2017; http://casoil-

resource.lawr.ucdavis.edu, accessed 29 Mar. 2018) and mySoil (http://www.bgs.
ac.uk/mySoil, accessed 29 Mar. 2018) now allow anyone with access to a global po-
sitioning system-enabled mobile phone or a computer to determine which soil map 
unit (SMU) they are in (Beaudette and O’Geen, 2009). These tools, however, still 
require an understanding of soil survey and map unit concepts to correctly identify 
the soil series COMP or to determine that the named COMP is not included in 
the map unit (Rossiter et al., 2015). This is particularly challenging in SMUs that 
consist of multiple components mapped together (i.e., an association or complex).

Therefore, individuals wishing to access soil information for a particular loca-
tion most commonly assume that the dominant COMP exists across the entire SMU 
(Anderson et al., 2006; Miller and White, 1998). Here, we refer to this simplification 
of the soil landscape model as the DC-based approach. The DC-based approach is 
simple and straightforward, but is often unreliable where: (i) there are multiple pos-
sible components within the map unit (Subburayalu et al., 2014) and (ii) a location of 
interest is close to a boundary of a map unit consisting of a different dominant com-
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Core Ideas

•	The traditional dominant-component-
based approach is not reliable for 
identifying soils.

•	We developed two approaches that 
can be used to identify soils with 
mobile devices.

•	A small set of easily collected field 
data could greatly improve soil 
identification.
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ponent (Gatzke et al., 2011).In addition, the DC-based approach 
potentially misses important soil variations, which may result in 
inefficient or incorrect management decisions. Using only a DC-
based approach ultimately leads to diminished confidence in soil 
survey products, leading to wasted resources, crop failure, or struc-
tural damage to infrastructure where the identified soil is quite dif-
ferent from the correct one.

Many consumers of soil surveys lack the training or time to 
validate map unit concepts in the field. Therefore, the objective 
of this study was to develop an approach that can be used to help 
improve the ability of non-soil-scientists to identify the COMP 
correctly. Two new approaches were developed from information 
in traditional soil maps based on either location alone or location 
together with soil properties that can be relatively easily deter-
mined with guidance provided through smartphone and other 
mobile platforms. Therefore, end-users of our approaches would 
only need to make simple observations in the field to identify 
the most likely COMP, increasing the accessibility of soil survey 
information to those with little or no soil science training.

Materials and methods
Soil Geodatabase

The digital soils geographic database used in this study was 
derived from the USDA–NRCS Soil Survey Geographic data-
base (SSURGO) and the USDA-NRCS State Soil Geographic 
Database (STATSGO2). Both SSURGO and STATSGO2 are 
available for download from Web Soil Survey at http://websoil-
survey.nrcs.usda.gov (accessed 29 Mar. 2018). The SSURGO 
database has a higher spatial resolution with a map scale from 
1:12,000 to 1:63,360 and covers ~95% of the contiguous United 
States. By contrast, STATSGO2 has a lower spatial resolution 
with a map scale of 1:250,000 and complete coverage of the con-
tiguous United States (the lower 48 states).

We first combined SSURGO and STATSGO2 to gener-
ate a soil property geographic database with complete coverage 
across the contiguous United States. This was done by first re-
moving the coverage areas of STATSGO2 that overlapped with 
the more detailed SSURGO and then combining the remain-
ing STATSGO2 with SSURGO: the Combined SSURGO and 
STATSGO2 Geographic Database (CoSSGO) database. One 
polygon in the CoSSGO database represents one map unit; one 
map unit consists of one or more COMPs; one COMP consists 
of several soil horizons. Site-specific (e.g., slope) and horizon-
specific information (e.g., sand, silt, and clay contents) are in-
cluded in the CoSSGO database.

Approach Development
The goal of this study was to develop approaches suitable 

for nonexperts that can be easily implemented on mobile devices. 
Therefore, we assumed that the following field observations are 
important and also feasible to collect with mobile devices by non-
experts: spatial location (latitude and longitude), slope, soil texture 
(0–200 cm) by feel (Vos et al., 2016), and depth to restrictive layer.

Accordingly, we developed two approaches that used different 
types of observations (Fig. 1). The first approach (hereafter called 
the location-based approach) was developed to identify the COMP 
solely based on the geographic location within the map unit. The 
second approach (hereafter called the observation-based approach) 
was developed to identify the COMP on the basis of easily observed 
soil properties (e.g., soil texture by depth). Detailed descriptions of 
the two approaches are given in the following sections.

The Location-Based Approach
The location-based approach was developed to identify 

the COMP on the basis of the location (i.e., latitude and lon-
gitude) of a point in consideration of all soil map unit polygons 
(SMUPs) surrounding that location. For a given location, the ap-
proach involves the following steps in order (Fig. 1):

(i)	 Identify the internal “home” SMUP that the location 
falls within;

(ii)	 Identify the external “neighbor” (contiguous) SMUPs 
that fall within a 100-m radius of the location (we also 
examined radii greater than 100 m; however, the results 
were not different from those with the 100-m radius);

(iii)	 Query the COMPs of both the neighbor and home 
SMUPs,

(iv)	 Calculate the conditional probability of each COMP 
(as presented later), and

(v)	 Identify the COMP with the highest conditional 
probability.

The conditional probability of a COMP is a function of: (i) the 
distance-weighted probability of the SMUP containing the COMP 
and (ii) the probability of the COMP within its SMUP. For a given 
location, the conditional probability of a COMP was defined as:
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where Pcomp,j is the conditional probability of COMP j, in is the to-
tal number of home and neighbor SMUPs that contain COMP j, 
Pmu,i is the distance-weighted probability of SMUP i, and pcomp,i,j 
is the probability (i.e., the area coverage of COMP in the CoSSGO 
database) of COMP j in SMUP i, it is the total number of home and 
neighbor SMUPs, kt,i is the total number of COMPs in the SMUP 
i, and Pcomp,i,k is the probability of COMP k in the SMUP i. The 
distance-weighted probability of SMUP i (i.e., Pmu,i) is defined as:

,
,  for the neighbor map unitmu iD

mu iP eb⋅= ; [2]

, 1.0 for the home map unitmu iP = , [3]

where b is the exponential coefficient (m-1) and Dmu,i is the short-
est distance (m) from the given location to SMUP i. The exponen-
tial coefficient, b, is unknown and is estimated as presented later.

http://websoilsurvey.nrcs.usda.gov
http://websoilsurvey.nrcs.usda.gov
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The Observation-Based Approach
The observation-based approach identifies the COMP by 

calculating the similarity between the observations and the likely 
COMP. After the home and neighbor COMPs are identified (as 
discussed in the previous section), the similarities in slope, soil 
texture by depth, and depth to restrictive layer (e.g., bedrock, if a 
full soil profile is described) between observations and COMPs 
are then calculated. We chose these soil properties to identify 
COMP because they are relatively easily observed in field; how-
ever; they are not the only properties that can be used to differ-
entiate soils. Many other soil properties (e.g., cation exchange 
capacity, and pH) are also important for differentiating soils but 
are not easily observed by end-users (e.g., the general public), so 
these properties are not included in our approaches.

Slope and depth to restrictive layer similarities are defined as:
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where Sslope,j is the similarity between the observed slope and that 
of COMP j; SDtR,j is the similarity between the observed depth to 
restrictive layer and the representative value of COMP j; SlopeO 
(in %) and DtRO (in cm) are the observed slope and depth to the 
restrictive layer, respectively; SlopeC,j (in %) and DtRC,j (in cm) 
are the slope and depth to the restrictive layer of COMP j in the 
CoSSGO database, respectively; and SlopeR and DtRR are the rang-
es of slope and depth to the restrictive layer in the CoSSGO data-
base, which are set to 200% and 457 cm, respectively. We expect 
that these similarities would be automatically calculated and acces-
sible to end-users (soil scientists and non-soil-scientists) via mobile 
devices (e.g., smartphones) and/or web browsers in the future.

It is reasonable for end-users to estimate soil texture by 
feel and then record the soil texture class (Vos et al., 2016) via 
mobile devices with guidance embedded in mobile applica-

tions. For example, LandInfo, one of the LandPKS app modules, 
has video demonstrations on how to conduct field estimates of 
soil texture by feel (Herrick et al., 2016). The similarity in soil 
texture between a measured soil profile and a COMP profile can 
be calculated via the following steps:

(i)	 Identify the texture classes of the observed soil profile;

(ii)	 Find the representative sand and clay contents for the 
texture classes of the observed soil profile (Table 1);

(iii)	 Find the texture classes of the profile of the COMP;

(iv)	 Find the representative sand and clay contents for the 
profile of the COMP (Table 1);

(v)	 Slice the observed soil profile and the profile of the 
COMP into layers with 1 cm thickness (Beaudette et 
al., 2013);

(vi)	 Calculate the similarities of sand and clay contents as:
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where Ssand,j and Sclay, j are the similarity of sand and clay be-
tween the observed soil profile and COMP j; z is the soil depth 
(cm); zb is the calculation domain (cm); zb,p and zb,c are the 
depths to the lower boundary of the observed soil profile and 
profile of COMP j, respectively (in cm); SandO,z and ClayO,z 
are the representative sand and clay contents (in %) at soil 
depth z (cm) based on the field-observed soil texture class, re-
spectively; SandC,z,j and ClayC,z,j are the representative sand 

Fig. 1. The workflow of the two developed approaches (location- and observation-based) and the traditional dominant component based approach 
(the DC-based approach). COMP = soil map unit component.
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and clay contents (in %) at depth z based on the soil texture 
class of COMP j; and SandR and ClayR are the ranges of repre-
sentative sand and clay contents (in %) in Table 1,which are set 
to 82.5% and 65%, respectively. 
The final step is to calculate the similarity of the soil texture as:
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where Stext,j is the similarity between the observed soil texture by 
depth and that of COMP j.

The total similarity is calculated as:
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where Stotal,j is the total similarity with COMP j. A higher total simi-
larity indicates a better match between a COMP and an observation.

The DC-Based Approach
For comparison, the COMP was also identified using the 

traditional DC-based approach, which is based on the domi-
nant COMP of a map unit. For a given location, the DC-based 
approach first queries all of the COMPs in the home SMUP 
that the location falls within and then identifies the dominant 
COMP that has the maximum area coverage in the home SMUP 
(Fig. 1). Mathematically, the location-based approach can be 
simplified to the DC-based approach by assuming that the dis-
tance-weighted probability of the neighbor SMUP (i.e., Pmu,i in 
Eq. [2]) is equal to zero.

Performance Evaluation
We used the Rapid Assessment of US Soil Carbon (RaCA) 

database to examine the performance of the three approaches. 
The RaCA database contains 32,084 pedons and 144,833 
samples from 6148 US locations (Fig. 2; Soil Survey Staff and 
Loecke, 2016; Wills et al., 2014), so there are approximately five 

pedons at each location and one or more horizons for each pe-
don. The pedons and COMPs were excluded from the test data-
set if they: (i) did not have soil texture information, (ii) had miss-
ing soil horizons between the surface and lower boundaries, (iii) 
had no slope information, or (iv) had no location (latitude and 
longitude) information. Data used as inputs included the spatial 
location (for all of the three approaches) and field-determined 
texture by depth, depth to the restrictive layer (if available), and 
slope (which was necessary for the observation-based approach).

The Nash–Sutcliffe efficiency (NSE) was used to evaluate 
and compare the performance of different approaches. This was 
defined as (Nash and Sutcliffe, 1970):
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where m is the number of pedons; Xn and Yn are the observed 
and predicted soil properties (e.g., representative sand percent-
age) for pedon n, respectively; and X  is the mean value of ob-
served soil properties from the RaCA pedons. The NSE ranges 
from ¥ to 1.0 with NSE = 1 indicating a perfect match between 
the observed and predicted properties. The performance of the 
three approaches was graded using the following criteria: “very 
good” if the NSE was greater than 0.65, “good” if the NSE was 
between 0.65 and 0.50, “satisfactory” if the NSE was between 
0.50 and 0.30, and “unsatisfactory” if the NSE was less than 0.30 
(Moriasi et al., 2007).

The NSE was calculated separately for each soil property 
(i.e., soil texture by depth, slope, and depth to the restrictive lay-
er). For the DC-based and observation-based approaches, NSE 
was calculated of the basis of the predicted and observed soil 
properties. For the location-based approach, the exponential co-
efficient (i.e., b in Eq. [2]) was unknown and was first estimated 
by maximizing the total NSE for sand percentage, clay percent-
age, slope, and depth to the restrictive layer. After b was estimat-
ed, the NSE for the location-based approach was then calculated 
on the basis of the predicted and observed soil properties.

Results and Discussion
Comparisons among Approaches

For all of the pedons, the observation-based approach per-
formed best among the three approaches used for identifying 
COMPs whose properties most closely resembled the prop-
erties of the test RaCA pedons (Table 2, Table 3). This was a 
result of the site-specific input data (i.e., slope and soil texture 
by depth) required by the observation-based approach to con-
strain soil identifications. As noted above, these properties were 
selected because they are relatively easy and reasonable (com-
pared with other soil properties) to collect in the field. For the 
observation-based approach, ~57% of the calculated NSEs fell 
within the performance category “very good” (NSE > 0.65), 
~18% within the category “good” (0.5 < NSE ≤ 0.65), 2% 
within the category “satisfactory”, and ~23% within the category 
“unsatisfactory” (Table 2, Table 3).

Table 1. The representative sand and clay contents for the tex-
ture classes developed by the USDA.

 
Soil texture class

Range Representative content 

Sand Clay Sand Clay

————%———— ————%————
Sand 85–100 0–10 92.5 5
Loamy sand 70–90 0–15 80 7.5
Sandy loam 43–80 0–20 61.5 10
Sandy clay loam 45–80 20–35 62.5 27.5
Loam 23–52 7–27 37.5 17
Silt 0–20 0–12 10 6
Silt loam 0–50 0–27 25 13.5
Silty clay loam 0–20 27–40 10 33.5
Clay loam 20–45 27–40 32.5 33.5
Sandy clay 45–65 35–55 55 45
Silty clay 0–20 40–60 10 50
Clay 0–45 40–100 22.5 70



www.soils.org/publications/sssaj	 ∆

The performance of the location- and DC-based ap-
proaches, overall, were similar to each other and significantly 
lower than that of the observation-based approach. For the lo-
cation-based approach, ~2% of the calculated NSEs fell within 
the performance category “very good” (NSE > 0.65), ~17% 
within the category “good” (0.5 < NSE ≤ 0.65), ~20% within 
the category “satisfactory” (0.3 < NSE ≤ 0.5), and 63% within 
the category “unsatisfactory” (NSE ≤ 0.3) (Table 2, Table 3). 
For the DC-based approach, ~2% of the calculated NSEs (ex-
cept for depth to the restrictive layer) fell within the perfor-
mance category “very good”, ~14% within the category “good”, 
~14% within the category “satisfactory”, and ~70% within the 
category “unsatisfactory” (Table 2, Table 3).

For areas where the dominant COMP was <51% of the 
map unit, the location-based approach was slightly better than 
the DC-based approach (Table 2) when the pedons were close 
to the SMU boundaries (i.e., £15 m). The location- and DC-
based approaches performed similarly when the pedons were 
further from the SMU boundaries (i.e., >15 m). In contrast, 
when the dominant COMP comprised >51% of a SMU, the 
location-based and DC-based approaches performed similarly 
(Table 3) no matter whether the pedons were close to or away 
from the SMUP boundaries (Table 3).

The RaCA dataset has some strengths and limitations when 
assessing accuracy. The strengths included the fact that the pe-
dons were geographically dispersed and represented all major soil 
groups and most of the land use and cover classes (Soil Survey 
Staff and Loecke, 2016). However, the pedons were selected to 
represent the dominant component in the SMUP in which they 
occurred and thus represented the most likely and most common 

conditions to be observed. Therefore, the dataset was biased to 
favor the DC-based approach.

Another limitation was that the sample data only in-
cluded basic descriptions and texture class information with-
out detailed laboratory analysis (the implications of this are 
discussed below). Although soil series names were assigned to 
each RaCA pedon that might correspond with COMPs in the 
CoSSGO database, initial exploratory analysis indicated that 
the comparison was not informative. This is probably because 
of incomplete pedon information for soil series identification 
(e.g., pedons were only sampled to 1 m) and because of changes 
in soil series and COMPs between the time when the RaCA 
pedons were sampled and the time when the CoSSGO spatial 
and tabular data were obtained.

Comparison among the Soil Properties
All three approaches more accurately predicted the slope 

and sand content of the pedons than the clay content and were 
unable to “satisfactorily” (i.e., NSE ≤ 0.3) match the depth to 
the restrictive layer (Table 2, Table 3). This might be partially 
because the depth to the restrictive layer can be difficult to deter-
mine and tends to vary significantly within short distances (e.g., 
a few meters), whereas the slope tends to be relatively invariable 
within short distances and easier to measure with a high degree 
of accuracy (compared with depth to the restrictive layer and soil 
texture). This results in a better match between slope observa-
tions and COMP slope by the three approaches.

In addition, the representative value of sand and clay from 
the soil texture classes (instead of the actual sand and clay con-
tents; Table 1) were used by the observation-based approach to 

Fig. 2. Spatial distribution of the pedons in the Rapid Assessment of US Soil Carbon (RaCA) database. Each dot denotes a location and each 
location has approximately five pedons.
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perform soil profile matching and to evaluate the performance of 
the three approaches (i.e., calculating the NSE). Using the tex-
ture class to identify the representative sand and clay contents 
may reduce the variation in actual sand and clay contents. For ex-
ample, two different soils that have different actual sand and clay 
contents may have the same representative sand and clay content, 
because the two soils fall within the same soil texture class. This 
results in a relatively better match of soil texture – compared 
with depth to the restrictive layer – between the observations 
and COMPs by the three approaches.

Moreover, the soil texture class in the RaCA database was 
determined by well-trained soil scientists. The soil texture class 
determined by non-soil-scientists would be expected to have lower 
accuracy than that in the RaCA database; therefore, the perfor-
mance of the observation-based approach might be lower in reality 
when the soil texture class is determined by non-soil-scientists.

Implications for Modeling
One of the most challenging issues facing most (if not all) 

ecosystem and crop models is the inaccuracy of site-specific soil 
information (e.g., soil texture) (Luo et al., 2012), which sub-
stantially affects the quality of model simulations and projec-
tions. This is because soil information is critical for initializing, 
calibrating, or validating these models at site, ecosystem, and re-
gional scales. The observation-based approach greatly improves 

the accuracy of COMP identification. The identified COMPs 
can then be used to retrieve and estimate other important soil 
properties associated with components within a soil survey that 
are difficult or time-consuming to measure (e.g., soil organic C 
content). Therefore, using user-provided texture and our ap-
proaches to generate more accurate soil predications for use with 
ecosystem and crop models has great potential to improve the 
reliability of model simulations and predictions by substantially 
reducing the uncertainties of the representations of soil proper-
ties as model inputs or validation datasets.

Implications for Increasing the Use of Soil 
Information by Land Managers

The general public (including farmers, gardeners, natural re-
source managers, and policymakers) requires soil information to 
make decisions regarding land suitability, productivity, profitabil-
ity, stability, and sustainability. These approaches not only are eas-
ily implemented and deployed on smartphones and other mobile 
devices but they also do not require the general public to have an 
extensive knowledge of soil science or soil surveys to collect the 
necessary data that drive the approaches. With the rapid growth in 
the number of smartphone users, these approaches and any subse-
quent mobile applications developed from these approaches could 
be a powerful tool for the general public to identify the correct 

Table 2. The calculated Nash–Sutcliffe efficiency (NSE) for the pedons where the dominant component coverage in the home map 
units is <51% for pedons <5 to 100 m from the nearest map unit boundary†.

 
x‡ 

DC-based § Location-based Observation-based

Sand Clay Slope DtoR Sand Clay Slope DtoR b Sand Clay Slope DtoR

m ———%——— cm ———%——— cm ———%——— cm
<5 0.26 <0 <0 <0 0.33 0.04 <0 <0 -0.483 0.67 0.72 0.79 <0
5–10 <0 <0 0.29 <0 <0 <0 0.52 <0 -0.051 0.70 0.51 0.78 <0
10–15 0.07 0.16 <0 <0 0.31 <0 0.37 <0 -0.035 0.80 0.73 0.72 0.23
15–20 <0 <0 0.67 <0 <0 <0 0.67 <0 -0.052 0.60 0.60 0.78 <0
20–25 0.20 <0 0.52 <0 0.20 <0 0.53 <0 -0.062 0.67 0.54 0.68 <0
25–50 0.27 0.00 0.52 <0 0.28 0.01 0.51 <0 -0.031 0.81 0.67 0.76 0.01
50–100 0.33 0.07 0.02 <0 0.40 0.23 0.36 <0 -0.024 0.80 0.79 0.60 0.10
† �The bold, single underlined, and dotted underlined numbers indicate performance ratings of “very good” (NSE > 0.65), “good” (0.5 < NSE ≤ 

0.65), and “satisfactory” (0.3 < NSE ≤ 0.5), respectively. The remaining numbers indicate “unsatisfactory” performance (NSE ≤ 0.3).
‡ The shortest distance from a given location to the bounds of its neighboring map unit polygons.
§ DC, dominant component; DtoR, depth to the restrictive layer; b, exponential coefficient [Eq. 2].

Table 3. The calculated Nash–Sutcliffe efficiency (NSE) for the pedons where the dominant component coverage in the home map 
units is >51% for pedons <5 to 100 m from the nearest map unit boundary†.

 
x‡ 

DC-based § Location-based Observation-based

Sand Clay% Slope DtoR Sand Clay Slope DtoR b Sand Clay Slope DtoR

m ———%——— cm ———%——— cm ———%——— cm
<5 0.31 0.16 <0 <0 0.31 0.18 <0 <0 -0.173 0.71 0.61 0.79 <0
5–10 0.60 0.10 0.35 <0 0.60 0.10 0.35 <0 -0.081 0.80 0.66 0.76 0.41
10–15 0.52 0.02 0.51 <0 0.52 0.01 0.51 <0 -0.043 0.78 0.59 0.79 0.30
15–20 0.35 0.16 0.16 <0 0.36 0.18 0.18 <0 -0.012 0.74 0.71 0.76 <0
20–25 0.56 0.24 0.33 <0 0.56 0.24 0.33 <0 -0.031 0.84 0.68 0.59 <0
25–50 0.48 0.29 0.56 <0 0.48 0.29 0.56 <0 -0.021 0.79 0.70 0.68 <0
50–100 0.48 0.32 0.65 <0 0.48 0.32 0.65 <0 -0.013 0.79 0.70 0.79 <0
† �The bold, single underlined, and dotted underlined numbers indicate performance ratings of “very good” (NSE > 0.65), “good” (0.5 < NSE ≤ 

0.65), and “satisfactory” (0.3 < NSE ≤ 0.5), respectively. The remaining numbers indicate “unsatisfactory” performance (NSE ≤ 0.3).
‡ The shortest distance from a given location to the bounds of the neighboring map unit polygons.
§ DC, dominant component; DtoR, depth to the restrictive layer; b, exponential coefficient [Eq. 2].
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COMP accurately and thus make efficient and effective decisions 
related to environmental, agricultural, and ecological issues.

Conclusions
Accurate and accessible soil information is critical for natu-

ral resource management. Here, we developed two approaches 
that can be used to identify COMPs with either location alone, or 
location together with soil properties that are easily determined 
in the field. Our results indicated that the observation-based 
approach could significantly increase the reliability of COMP 
identification by using a small set of easily-collected field data, 
suggesting that the observation-based approach should be used 
whenever possible. However, if field observations of soil texture 
and slope are unavailable, the location-based approach may be 
useful for slightly improving the predictions (relative to simply 
using the dominant COMP) for locations that are close (<15 m) 
to the SMUP boundaries, although the performance of both the 
location- and DC-based approaches were significantly lower and 
less satisfactory than that of the observation-based approach.

Further improvements of the location-based approach are 
likely to be made possible by including some readily available ras-
ter environmental covariates (e.g., high-resolution digital eleva-
tion and vegetation maps; Nauman and Duniway, 2016; Zhu et 
al., 2010), which might be helpful for further constraining the 
selection and identification of COMPs without field observa-
tions. Similarly, with the rapid development of mobile sensors 
(e.g., Delgado et al., 2013; Gómez-Robledo et al., 2013; Han et 
al., 2016; Zerger et al., 2010), more observations (e.g., soil color 
and pH) could potentially be included to further improve the 
performance of the observation-based approach (for example, 
further differentiating soil components that have overlapping 
soil properties) as collecting those data with smartphones and 
other mobile devices becomes easier in the near future.
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